Ensemble clustering method based on the resampling similarity measure for gene expression data.
نویسندگان
چکیده
The rapid development of microarray technologies enabled the monitoring of expression levels of thousands of genes simultaneously. Microarray technology has great potential for creating an enormous amount of data in a short time, and now becomes a new tool for studying such broad problems as classification of tumors in biology and medical science. Many statistical methods are available for analysing and systematizing these complex data into meaningful information, and one of the main goals in analysing gene expression data is the detection of samples or genes with similar expression patterns. In this paper, we developed a new clustering method of class discovery in a dataset. The performances of the new and existing methods were compared using both simulated data and real gene expression data. The proposed method was generally found to give more accurate cluster numbers and cluster assignments for individual objects than the three well-known general clustering methods such as agglomerative and divisive hierarchical clustering (HC) and self-organizing map (SOM). It also gave better results than the three consensus clustering methods based on agglomerative and divisive HC and SOM.
منابع مشابه
Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملخوشهبندی دادههای بیانژنی توسط عدم تشابه جنگل تصادفی
Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical methods in medical research
دوره 16 6 شماره
صفحات -
تاریخ انتشار 2007